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On the Solution of a Microstripline with
Two Diaelectrics

ROBERTO C. CALLAROTTI, SENIOR MEMBER, IEEE, AI;ID AUGUSTO GALLO

Abstract —We present the calculation for the capacitance and the effec-

tive dielectric constant for a microstripline with two different dielectrics,

The solution is based on the exact transformation law provided by two
successive Schwarz-Christoffel transformations, which is given in terms of
the Jacobi Z, function. This function can be easily separated into its real
and imaginary parts, allowing the exact determination of the curve which
separates the two dielectrics in the transformed plane. Once the curve is
obtained, the capacitance of the system is calculated numerically by a
finite-difference method. We compare cur results with data obtained from
Wheeler’s approximate ellipse solution, as well as with other analytical
solutions. We assume an infinitely wide ground plane and TEM-mode
propagation.

I. INTRODUCTION

IG. 1(a) SHOWS the geometry of the stripline consid-

ered in this paper. Although microstrips have been
discussed for some thirty years, no analytical exact solution
has been given for the case when two different dielectrics
are considered, ¢; # ¢,. This is in part due to the fact that
the line must be transformed by conformal transformations
into the geometry, shown in Fig. 1(b), before the calcula-
tion of capacitance can be attempted. The transformation
law from the z to the p plane is normally given in terms-of
elliptic functions and elliptic integrals, thus making the
determination of the line that separates the two dielectrics
in the plane p difficult. .

In the present paper, we review brleﬂy those significant
analytical solutions to the microstrip problems, and then
proceed to derive the transformation law in a rather sim-
pler way, in terms of Jacobi Z, functions. From the trans-
formation law, we obtain the function that defines the
curve between the dielectrics, and then proceed to solve for
the capacitance of the system. We present a comparison of
our results with previously published approx1mate results
for the two dielectric case.

II. PrEvious THEORETICAL RESULTS

We briefly review some of the pertinent theoretical
calculations related to the microstripline.

A. Assadurian and Rimai 1952 [1]

These authors consider the same geometry shown in Fig.
1(a), with the ground plane of infinite extent, assuming a
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Fig. 1. (a) The microstrip real geometry in z space. (b) The geometry in

p plane (assuming an infinite ground plate covered by €;).

uniform dielectric between and above the metal plates, and
consider the case of a wide upper strip (d/h > 1), so that
the problem solved calculated the fringing field at the end
of an infinitely wide parallel plate plane condenser. This
problem was in fact presented by E. Weber [2] in 1950.
This approximate solution for the case of a single dielectric
yields impedance values that differ significantly from the
correct solution, even in the range of impedances below
50 €.

B. Black and Higgins 1958 [3]

These authors consider the geometry shown in Fig. 1(a)
for the case of a single dielectric, and solve the problem by
exact conformal mapping, considering a ground plane of
finite width. Their work results into six equations with six
unknowns that must be solved in order to obtain the line
parameters. Their procedure is correct, but its application
is complicated even for the case of only one dielectric. We
will compare later on their finite ground plane, one dielec- -
tric solutions, with our solution for an infinite ground
plane.

C. Wheeler 1964—65 [4], [5]

This author uses an approximate conformal transforma-
tion applied to the geometry of Fig. 1(a). He determines
the approximate nature of the curve in the p plane that
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separates the two different dielectrics, and assumes rather
empirically that this curve is an ellipse. As we will show
later on, the exact curve between the dielectrics is indeed
similar to an ellipse in the sense that it intersects the metal
plate at u, + iv;, with an angle of 90°, and it intersects the
metal plate of 0+ iy, with an angle of 0° (as can be
inferred from the conformal transformation of the angles
in the z plane), but differs substantially from an ellipse in
the intermediate region in the p plane. This difference from
the ellipse causes substantial differences in the values of
calculated impedances, particularly for small d /4 ratios
and for the case where the two dielectric constants differ
strongly. Using an ellipse as the curve between the dielec-
trics, Wheeler solved the electromagnetic problem and
calculated the capacitance of the mixed diclectric media.

D. Schneider 1969 [6], [7]

This author presents the exact conformal transformation
for the geometry considered in Fig. 1(a) for the case of one
dielectric and when the ground plane is infinite in extent.
Schneider’s solution is given in terms of the logarithmic
derivative of Theta functions; this author did not attempt
to consider the case of two different dielectrics.

E. Poh et al. 1981 [8]

In this recent paper, the authors consider the solution for
the line capacitance and the characteristic impedance of a
microstripline by means of the spectral domain analysis
incorporating the edge effect singularity considering two
dielectrics and a ground plane of infinite width. We will
compare their results with ours later on in the paper.

We have indicated only those references that are of
particular interest for the case of two dielectrics. The
interested reader is referred to cumulative references for
complete bibliographical reviews [9].

II. SOLUTION FOR THE CASE OF ONE DIELECTRIC
(=€;=¢€)

Fig. 2 indicates the procedure required for transforma-
tion of the initial microstrip geometry in the z plane (Fig.
2(a)) into the real axis of the e plane (Fig. 2(b)) by means
of a Schwarz-Christoffel transformation of the polygon
2,2,2,2,Z;Z,. The real axis of the e plane is then
transformed into the rectangular polygon P, P, PP, Ps in
the p plane (Fig. 2(d)) by means of an inverse Schwarz-
Christoffel transformation. The plane indicated in Fig. 2(¢)
(plane w) is included for illustrative purposes since it arises
naturally in the evaluation of some of the integrals.

Once the parameters of the p plane are determined (u,
and v,), the capacitance of the microstrip for the simpler
one dielectric case can be calculated.

A. The Transformation z to e

By means of a standard Schwarz-Christoffel transforma-
tion, the z plane polygon indicated in Fig. 2(a) is trans-
formed into the real axis of the e plane by
(e—a')de

Je(e—1)(e—b)

z=zO+Afoe (1)
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where z,. A, a’, and b’ are constants to be determined by
evaluating the correspondence of points in the z and e
planes. We introduce a new variable w (w? =e) so as to
obtain integrals directly expressible in the canonical forms
of elliptic integrals and elliptic functions [10], [11].

From the correspondence of points z; = # and e; =1, we
obtain

h/(=24) = %(a’— B)K(m) VB E(m)  (2)

where

K (m) = the complete elliptic integral of the first kind

: (3)

E(m) = the complete elliptic integral of the second kind
(4)

m=(1/b"),  the modulus of the integrals.  (5)

From the correspondence of points z; =4 and e; =b', we
obtain

h/(=24) = ‘/—[;—(a’—b’)K(m)h/b_’E(m)

— B (E'(m)~(a'/b)K(m)} ()
where

K'(m)=K(1—m) (7)

E'(m)=E(1—m). (8)
From the imaginary part of (6), we have

a’'=b'(E'(m)/K'(m)). (9)
The correspondence of points z, and e, implies
ﬁ%:%mmnﬁw(mw(m}
~i{ o1 /) =K ()
— Wb {E(m)=E(¢1/e)}  (10)
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where

F(¢,/a;) = the incomplete elliptic integral of the

first kind (11)
E(¢,/a;) = the incomplete elliptic integral of the
second kind (12)
.o [ B—a
¢1=Sln ! b/__l (13)
a; =cos”H(1/vb"). (14)

The imaginary part of (10) yields

4= T (Fo/a) =K' (m))

+Vb' {VE'(m)—a’K'(m)}. (15)
Dividing (15) by (2), and rearranging terms, we obtain

iz —a,F(¢l/a1)+b,E(¢1/a1) (16)
2h (¢/=b)K(m)+bE(m)

If we substitute, in the equation above, the value of a’, as
given by (9), and if we use the definition of the Jacobi Z,
function

Z,($1/) = E(¢1 /)~ E(¢,) F(¢1/0y)/K(a;)
(17)

we can then rewrite (16) as follows:
2%1 =(2/m)K'(m)Z,($,/a;) = a function of m. (18)

Once m is known from the solution of (18), a’ can be
determined from (9). The constant 4 is found in terms of
m and b’ by substituting (9) in (2), and by using Legendre’s
[10] relation

A=—{hK'(m)}/{=/b"}. (19)

B. The Transformation p to e

Applying the normal Schwarz-Christoffel transformation
to the polygon P, P, P, P, P;, defined in Fig. 2(d), in plane
p, we obtain the following transformation law from the p
to the e plane:

e de
p=p,+B .
0 fo Je(e—1)(e—b)
By establishing the relation between corresponding points
in planes e and p, and evaluating (20), we can determine

the values of the p plane parameters p,, u,, vy, and v, as
follows:

(20)

Po=0 (21)
uo/(+2B) = (1/V6")K(m) (22)
Uy -+ i, ; )
g = WV {K(m)+iF(¢,/a;)}  (23)
where
.y [ b(a 1)
¢, = sin ]/ —_——a’(b’—l) (24)

a, =cos H1/Vb") (25)
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so that by separating real and imaginary parts we obtain

0/(+2B) = (L0 ) F(¢, /ay). (26)
The equivalence of points ps and es finally yields

Uot 1o _

g = AR K-k () (D)

and again by separating real and imaginary parts, we
obtain
uo/(+2B)=(1/V0")K(m)
vo/(+2B)=(1/V0")K(m).

(28)
(29)

C. The Calculation of the Capacitance for the Single
Dielectric Case e, =¢,=¢

When the microstrip is immersed in a media with uni-
form permitivity €, the capacitance per unit length of line is
easily calculated in the geometry of the p plane. Because of
the nature of the solution of the Laplace equation, the
electrostatic potential in the region between the metal
plates of the p plane is identical to the solution for the
potential in an infinite parallel plate condenser. Thus, C;
(the capacitance per unit length for the one dielectric case)
is simply given by

K'(m)
K(m)

Cr=2(vy/ug) =2e¢ (30)
where m is determined from (18) as a function of the
parameter of the line in z space: (h /24); the factor 2 takes
into account the fact that we considered half the line only.
In the case of a uniform dielectric, the wave propagation
mode is TEM, and we can easily determine the line imped-
ance. The velocity of propagation of the wave V is

1
LG

v (31)

1
where p is the permeability of the media, and L, is the
inductance per unit length of line. We determine the value
of L, from (31), and we substitute its value in the expres-
sion for the characteristic impedance of the line Z;

z,=\|L,/C = 3@ (32)
and finally, using (30), we obtain
_ [ JE\[ K(m)
Zl“(\/j)(zc(m))' (33)

In Fig. 3, we show values of impedance calculated
according to our results when the line is in free space
(e=¢, and p=p,) for different values of (d/h). Also
shown are results obtained by Assadurian and Rimai,
Black and Higgins, Wheeler, and Schneider. Table I shows
the comparison between numerical results. This compari-
son between the different results will be discussed later on
in the paper.
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Fig. 3. One dielectric (air) case: Z, versus (d/k) Continuous curve:
Our results; empty squares: Wheeler; dashed curve: Assadurian and
Rumai; filled squares: Schneider: filled circles: Black and Higgins (ratio
of top to bottom conductor widths =4); empty circles: Black and
Higgins (ratio of top to bottom conductors widths = 8)

TABLEI
2@ a/h am ash am
Wheeler Schneider Black and Higgins Our Results

210 0.146, (+ 0.14) 0.145, (~ 0.14) 0.1458
150 0.666, (+ 0.03) 0.662, (- 0.186) 0.6631
126.958 0.9927, ( 0.0) 0.9927
100 1.605, (- 0.90) 1.613, (- 0.10) 1.6150
88.132 2.000, (- 1.96) 2.040
56.338 4.000, (- 4.50) 4.189
50 4.840, (- 1.22) 4.786, (- 0.63) 4.9068
30 9.519, (- 0.90) 9.553, (- 0.56) 9.6062
20 15.592, {~ 0.20) 15.489, (- 0.86) 15.6230

IV. SoLUTION FOR THE T'wo0 DIELECTRIC CASE
€ 7€,

When the dielectric between the metal plates (see Fig.
1(a), z plane geometry) differs from the dielectric above the
top metal plate, the problem becomes quite complicated.
The waves no longer propagate in the simpler TEM modes:
the capacitance cannot be calculated simply, even in the P
plane geometry, unless the curve that separates the two
dielectrics is determined. We will follow other authors in
assuming quasi-TEM propagation. Thus, after determining
the combined z to p transformation and the curve between
dielectrics, we will be able to calculate the capacitance and
the impedance of the line.

A. The z to p Combined Transformation

Equations (1) and (20) that give the z to w and the ptoe
transformations, respectively, when written in terms of the
variable w, are

P S ol 9 L (34)
0 (b = w?)(1- w?)
w aw
—2B
! (&= w)(1=w?)
_ 2B dw (35)
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In view of the definition of the elliptic function sn [10] and

the nature of the integral in (35), we can write
w=sn(p) (36)

where p is a complex number closely related to p (as we
shall shortly see), and

"L

aw
1-w2(5) "' [1- w?]

=F(o/m) (37)

where
¢ = am p (the amplitude of p) (38)
m=1/b (39)

so that by combining (35) and (36), we can determine the
relationship between p and p

p=p/b’ /(2B). (40)
Furthermore, substitution of (36) into (34), use of (9) yields

z=2bi4 {p[l—?g”—ﬂp/m}- (41)

Writing Legendre’s relation in a modified form yields
E'(m) . E(m) 7
K'(m) K(m) 2K(m)K'(m)’
Recalling the form of the complex Jacobi Z,(p/m) func-
tion

(42)

Zn(p/m)=E(p/M)—%p

(43)
and using the value of 4 given by (19), we can write from
(41) the combined transformation law from the z to the p
plane in two equivalent forms

_ 2hK'(m) L
L T{Z,,(p/m)Jr W}

Z=ZhK;(m){Zn(pz‘/z/’”)+21((m;71<’(m)(pg)}'
(45)

As in the case of one dielectric, in the case of two
dielectrics the capacitance will depend on ratios of dis-
tances in the p plane. Thus, for our problem, B is arbitrary,
and we will select for simplicity 2B =vb’, so that p=p.
Through the remainder of the paper we will use (44), with

P=r.

(44)

B. The Curve Between Dielectrics in the p Plane

Fig. 2 shows the nature of the p plane curve; it corre-
sponds to the line z =/ + iy that separates the two dielec-
trics in the z plane (y is a real variable in the range
h < y <o0). All points u and v on the curve must satisfy
(44)

h+l:v=y%(”l){zn[(u+iv)/m]+ﬁ:((_mu%}'
(46)

Separating the Jacobi Z, function into its real and imagin-
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ary parts yields
Z,[(u+iv)/m]
=Z,(u/m)

N msn(u/m)cn(u/m)dn(u/m)sn?(v/m;)
1—sn?(v/my)dn®(u/m)

- 2K(m7;UK’(m)

_ do?(u/m)cn(v/my)sn(v/my)dn(v/m;) }
1—sn?(v/my)dn*(u/m)

—{awmm

(47)
where m;=1—m, and we have introduced the elliptic

functions sn, cn, and dn (see [10]). Substituting (47) into
(46), and the separate real and imaginary parts to yield

y= 2 7o/

’ N dn’(u/m)cen(v/my)sn(v/m;)dn(v/m;)
1-sn*(v/m,)dn? (u/m)

}(%)

and

_2K'(m) TU
l==—= {Zn(u/m)+—————2K(m)K,(m)

Jrmsn(u/m)cn(u/m)dn(u/m)snz(v/ml) (49)
1—sn?(v/m,)dn*(u/m) '
Equation (49) gives the desired relationship v = v(u) that

defines the curve between the dielectrics. In order to see
this, let us solve for sn(v/m;)

sn(v/m,)=g(u/m;)

_ msn(u/m)cn(u/m)dn(u/m) +dn*(u/m) o
2K/(m)_ZK(M)K,(m)_z,,(u/m)

(50)

where we have defined the function g(u/m;) for clarity.
From the definition of the inverse sn function we have

sn_l(v/m1)=v=/g(u/ml) dw
0

\/(W2 _1)(’”1“’2 - 1)
(51)

= F(¢;/my)

where

¢y =sin"![g(u/my)]. (52)
We can now resume the procedure which is followed in
our computer programs in the evaluation of the curve v{(u).

1) Determine m as a function of (d /h) by solving (18).

2) Select a value of u in the range between the plates
O<u<K).

3) Calculate Z, (u/m), sn(u/m), and dn(u/m).

4) Calculate g(u /m;) from (50).

5) Determine ¢, according to (52).

6) Calculate the desired v as: v = F(¢; /my).
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Fig. 4. Curve between dielectrics for two different m values. Continuous
lines: exact curves; dotted lines: quarter on an ellipse approximation.

Fig. 4 shows the curve between dielectrics in a normal-
ized diagram («v'=u/K(m) and V'=v/K'(m) for differ-
ent values of m. Also shown in Fig. 4 are two curves
corresponding to quarter of ellipses (for comparison with
Wheeler’s solutions).

C. The Calculation of the Capacitance for the Two
Dielectric Case

Once the curve between dielectrics is known, we proceed
to calculate the electrostatic potentials in the two dielectric
regions Vy(u’, v) and V,(w’,v"). Both ¥ and V, satisfy the
Laplace equation, subject to the following boundary condi-
tions:

11(0,0)=0 (53)
(1, v)y=r1,v)=1 (54)
ViV (w,0)=v ¥, (w,1)=0 (55)
n="n on the curve between (56)

Al AETAvESA dielectrics. (57)

Equation (54) indicates the application of a normalized
external voltage, and (57) implies the continuity of the
normal component of the electric-field density at the inter-
face between dielectrics. v * indicates the normal compo-
nent of the gradient. Due to the nature of the curve
between dielectrics, we solve the problem numerically at
discrete voltage nodes, as those indicated schematically in
Fig. 5. The details of this calculation are discussed elsewhere
[12]. Once the voltages at all nodes in a column next to a
metal plate are known, the capacitance C, for the two
dielectric system can be obtained. In the calculation, we
assumed medium 2 to be air (€, =¢€4).

Once C, is determined, in view of (30), we can define
and calculate an effective relative dielectric permittivity e

(58)

Thus, for the two dielectric case, when the top one is air,
the characteristic line impedance Z, (assuming TEM prop-

et = CK(m)/[2¢,K (m)].
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SEUERSERRES
¢ o o @ o ¢ o el-.

Fig. 5. The geometry of the two dielectrics capacitor. We indicate the
position of some of the discrete voltage nodes used in the numerical
calculation. The continuous curve separates the dielectrics, and the
broken curve indicates its numerical implementation. In our calculation
we used a matrix of 100 X100 nodes.

TABLE IT
Wheeler Poh et al Our Results
@/n 312 2(0) zi9) el
0.0 156.900 (-0.02} 156.8150 (-0 07) 156.9334 2.7888
0.20 131.200 (-0 02) 131.0790 (-0.11} 131.2270 2.8362
0 40 105.600 (+0.04} 105,4570 (~0.08} 105.5496 2.9020
0.80 80.360 (+0.60) 80.2888 (+0.51) 79.8765 3.0065
1.00 72 470 (+0.19) 72.4259 (+0.13) 72.3298 3 0553
1.25 64.780 (+0.13) 64.7711 (+0.11} 64.6965 3 1025
1.6666 55.280 (+1.07) 55.3316 (+1.17) 54.6919 3.1789
2.50 43,030 (+0.02) 43.1640 (+0.33) 43,0226 3.2977
5 00 26.270 (-0.18) 26.4120 (+0.35) 26.3188 3.5200
10 00 15.050 (+0.12) 15.0800 (+0.32) 15.0315 3.7304
15 00 10 716 (+1.41) 10.5661 3.8370

Two dielectrics case: €, = Free space, €] = 4.2. Our results are compared
with those of Wheeler [5] and those of Poh er «/. [8]. Numbers 1n
parentheses indicate percentage differences with our results.

TABLE II1
[
{ a/h I wheeler ‘ Poh et al Oour  Results
z (5 Z(2) z(a) s

0 10 48.94 (-0 43) 48 8455 (-0.62) 49 1500 28 4321
0.20 40 80 (-0 31) 40.7015 (-0 55} 10 9273 29 1575
0 40 32 70 (-0.11) 32.5941 {-0 43) 32 7362 30 1687
0.80 24.74 (+0 76) 24.6381 (+0.35) 24 5523 31.8215
100 22.26 (+0 53) 22,1577 (+0.07} 22 1419 32.6081
1.25 19.84 (+0 55) 19 7478 (+0 08) 19,7317 33.3529
1 6666 16 85 (+1.62) 16.7860 (+1.23) 16 5818 34.5829
2.50 13.03 (+0.74) 12 9930 (+0 46) 12.9340 36.4872
5.00 7.85 (+0 62) 7.8421 (+0 52) 7.8019 40 0576
10.00 444 (+0.76) 4 4260 (+0 44) 4.4065 43.4077
3.0821 0942

Two dielectrics case: €, = free space, €] = 51. Our results are compared
with those of Wheeler [5] and those of Poh er «/. {8] Numbers n
parentheses indicate percentage differences with our results

agation) will be given (according to (33)) as

Z
Z,=—2

(59)

-
€eft

where Z, is the impedance of the line immersed in air

(€; = €, = €,). Table II shows our impedance results for the
case where ¢] = 4.2, as well as results by Wheeler and Poh
et al. Table 111 shows similar results for the case ] = 51.

V. DIscUSSION

Fig. 3 and Table I present the comparison of our results
with those of others for the case of one dielectric. It is
interesting to compare the finite ground-plane solution of
Black and Higgins, and the infinite ground-plane solution.
The points shown on Fig. 3, corresponding to Schneider’s
solution, were calculated using his approximate solution
(see [6, egs. (16) and (17)). One entry in Table I corre-
sponds to the Schneider exact solution evaluated in terms
of theta functions, and it agrees exactly with our solution.
For the one diclectric case, any of the solutions presented
are accurate, with the exception of Assadurian and Rimai.
Of greater interest to us is the two dielectric solution. Our
results are summarized in Tables IT and I11. For the case of
€/ =42 and ¢; =51, and for the range of values (d/h)
presented, the maximum difference between our results
and those of Wheeler, and Poh ef al., is of the order of 1 to
2 percent.

ACKNOWLEDGMENT

We would like to express our thanks to M. V. Schneider
at Bell Laboratories, Crawford Hill, and to M. Avella at
the Universidad Simon Bolivar, Caracas, for useful discus-
sions on the subject. We also thank G. Fernandez at the
Fundacion Instituto de Ingenieria for his help in the
numerical calculations.

REFERENCES

{11 F. Assadurian and E. Rimai, “Simplfied theory of mucrostrip
transmission systems,” Proc. IRE, vol. 40, no. 12, pp. 1651-1657,
1952

[2] E. Weber, Electromagnenic Frelds, Theory and Applications Mapping
of Frelds, vol. 1. New York: Wiley, 1950, pp 333-338, 356-357.

[3] K. G. Black and T. J. Higgins, “Rigorous determmation of the
parameters of microstrip transmussion hines,” IRE Trans Microwave
Theory Tech., vol. MTT-3, pp. 93-113, 1955.

[4] H. A Wheeler, “Transmussion-line properties of parallel strips
separated by a dielectnic sheet.” JEEE Trans Microwuve Theory
Tech., vol. MTT-13, no 2, pp 172-185, Mar. 1965

[5] H A. Wheeler, “ Transmission-line properties of parallel wide strips
by a conformal-mapping approximation.” JEEE Trans. Microwuve
Theory Tech., vol MTT-12, pp. 280-289, 1964

[6] M. V Schneider, “Microstrip lines for microwave integrated cir-
cuits,” Bell. Syst. Tech. J , vol. 48, no 5. pp. 14211444, 1969

[71 M. V. Schneider, “Microwave and millimiter wave hybnid in-
tegrated circuits for radio systems,” Bell. Syst. Tech. J , vol 48, pp
1703-1727, 1969.

[8] S.Y Poh, W C. Chew, and J. A. Kong, “Approximate formulas for
line capacitance and characteristics impedance of mucrostrip line,”
IEEE Trans Microwave Theory Tech., vol. MTT-29, pp. 135-142,
Feb. 1981

[9] Cumulative Index, IEEE Truns. Microwave Theory Tech, vol MTT-
28, pp. 1343-1348, Nov 1980. See also H. Howe, Striplmne Crrcut
Design. Microwave Associates, 1974

[10] P. F Byrd and M. D Friedman, Handbhook of Ellipuic Integrals for
Engineers and Scientists, 2nd ed.  New York: Springer-Verlag, 1971.
M. Abramowitz and 1. Stegun, Handbook of Mathematical Func-
tions, Sth ed.  New York: Dover, 1968

G Fernandez, R. C. Callarotti, R. Padilla, O. Avancini, and E.
Paez, “Solucion exacta de una microlinea— Propredades Eléctricas,”
Acta Cientifica Venezolana, vol. 33, suppl. 1, p 261, 1982.

(11]

2]



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 32, NO. 4, APRIL 1984 339

Roberto C. Callarotti (M’78-SM’83) was born in
Alessandria, Italy, in 1939. He received the

. B.Sc.E.E. degree from the University of Texas, at
Austin, in 1960, and the degrees of M.Sc.E.E.,
E.E., and Ph.D. from the Massachusetts Institute
of Technology in 1962, 1963, and 1967, respec-
tively.

In 1970, he was a Research Fellow at Harvard.
Since 1960, he has been associated with the In-
stituto Venezolano de Investigaciones Cientificas
in Caracas, where he became Subdirector be-

tween 1980 and 1982. Since 1982, he has been President of the Fundacion
Instituto de Ingenieria, also in Caracas. He has worked in research and
development in superconductivity, inductive measurements, amorphous
materials and devices, electronic device modeling, and, recently, in micro-
strip analysis and device design.

Dr. Callarotti is a member of Tau Beta Pi, Eta Kappa Nu, Sigma Xi,
the Venezuelan Society for the Advancement of Science, and the Advisory
Committee of the Institute of Amorphous Studies.

L

Augusto Gallo was born in Urrao, Colombia, in
1949. He received the degree of Ingeniero
Electronico from the Universidad of Antioquia,
Colombia, in 1976, and the M.Sc.EE. degree :
from the Instituto Venezolano de Investigaciones
Cientificas in 1981.

Since 1981, he has been a Professor at the
Universidad del Zulia, Maracaibo, where he
teaches and carries out research in microstrips.

Analysis of Wave Propagation in Anisotropic
Film Waveguides with Bent Optical Axes

MASAHIRO GESHIRO, MEMBER, IEEE; YASUO KATHARA, AND SINNOSUKE SAWA, MEMBER, 1IEEE

Abstract —We present an analytical method for studying the wave
propagation in anisotropic planar optical waveguides where the oblique
angle between the optical axis and the propagation axis changes arbitrarily
in the film surface along the propagation length. The analysis is based on
the coupled-mode theory, where the coupling between a guided mode and
radiation modes is regarded to be of major importance. We apply a
hypothetical boundary method to quantize the continuum of radiation
modes, and replace the continuously changing oblique angle by a step
approximation. It is shown that these approximations do not degrade the
computational accuracy. To exemplify the wave-propagation properties, we
deal with a waveguide consisting of LiNbO; and let the oblique angle
change linearly along the propagation length. It is found that the incident
guided TE mode leaks its power primarily in a very narrow region centered
on the critical oblique angle, and that TE radiation modes play an im-
portant role in the power conversion, even though they carry far less power
than the TM radiation modes.

I. INTRODUCTION

T IS OF fundamental interest to know the guiding
properties of dielectric optical waveguides composed of
anisotropic, as well as isotropic, materials. Such knowledge
is needed for applications to guided-wave devices for opti-

Manuscript received January 13, 1983; revised October 19, 1983.

M. Geshiro and S. Sawa are with the Department of Electronics
Engineering, Faculty of Engineering, Ehime University, 3, Bunkyo,
Matsuyama, Ehime, 790 Japan.

Y. Kaihara is with Kakogawa Works, Kobe Steel, Ltd., Kanazawa,
Kakogawa, Hyogo, 675-01 Japan.

cal integrated circuits. Usually, two different approaches
have been adopted in waveguide analysis. One approach is
based on the eigenvalue method in which modal solutions
of Maxwell’s equations are determined with the help of
boundary conditions provided that the waveguide is in-
finitely long and homogeneous along the propagation axis.
Most papers on wave propagation in anisotropic wave-
guides using this method have dealt with purely guided
modes [1]-[6]. Recently, interesting propagation character-
istics of hybrid leaky modes supported by planar aniso-
tropic waveguides or metal-diffused anisotropic wave-
guides have been analyzed where the optical axis of the
composing material makes an oblique angle with the prop-
agation axis in the film surface [7], [8].

The other approach is based on the coupled-mode theory
[9]. It is suitable for describing the wave propagation in
waveguides that are inhomogeneous along the propagation
axis and/or of finite length suitable for integrated optics
devices. Therefore, propagation properties obtained from it
may be useful from the device-planning viewpoint. In the
coupled-mode theory, power leakage of a hybrid leaky
mode in an anisotropic waveguide is attributed to mode
conversion between a guided mode and radiation modes of
the orthogonal polarization [10]. The coupled-mode theory
is always applicable to the analysis of wave propagation in
anisotropic waveguides having any nondiagonal dielectric
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