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On the Solution of a Microstripline with
Two Dielectrics

ROBERTO C. CALLAROTTI, SENIOR MEMBER, IEEE, AND AUGUSTO GALLO

Abstract — We present the calculation for, the capacitance and the effec-

tive dielectric constant for a microstripline with two different dielectrics.

The solution is based on the exact transformation law provided by two

successive Schwarz-Christoffel transformations, which is given in terms of

the Jacobi Z. function. This function can be easily separated into its real

and imaginary parts, aflowhrg the exact determination of the curve which

separates the two dielectrics in the transformed plane. Once the curve is

obtained, the capacitance of the system is calculated numerically by a

finite-difference method. We compare our results with data obtained from

Wheeler’s approximate elfipse solution, as well as with other analytical

solutions. We assume an infinitely wide ground plane and ‘HIM-mode

propagation.

I. INTRODUCTION

‘F IG. l(a) SHOWS the geometry of the stripline consid-

ered in this paper. Although microstrips have been

discussed for some thirty years, no analytical exact solution

has been given for the case when two different dielectrics

are considered, c1 + c~. This is in part due to the fact that

the line must be transformed by conformal transformations

into the geometry, shown in Fig. l(b), before the calcula-

tion of capacitance can be attempted. The transformation

law from the z to the p plane is normally given in terms of

elliptic functions and elliptic integrals, thus making the

determination of the line that separates the two dielectrics

in the plane p difficult.

In the present paper, we review briefly those significant

analytical solutions to the microstrip problems, and then

proceed to derive the transformation law in a rather sim-

pler way, in terms of Jacobi Zn functions. From the trans-

formation law, we obtain the function that defines the

curve between the dielectrics, and then proceed to solve for

the capacitance of the system. We present a comparison of

our results with previously published approximate results

for the two dielectric case.

II. PREVIOUS THEORETICAL RESULTS

We briefly review some of the pertinent theoretical

calculations related to the microstripline.

A. Assadurian and Rimai 1952 [1]

These authors consider the same geometry shown in Fig.

l(a), with the ground plane of infinite extent, assuming a
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Fig. 1. (a) The microstrip reaf geometry in z space. (b) The geometry in

p plane (assuming an infinite ground plate covered by c1).

uniform dielectric between and above the metal plates, and

consider the case of a wide upper strip (d/t? >> 1), so that

the problem solved calculated the fringing field at the end

of an infinitely wide parallel plate plane condenser. This

problem was in fact presented by E. Weber [2] in 1950.

This approximate solution for the case of a single dielectric

yields impedance values that differ significantly from the

correct solution, even in the range of impedances below

50 Q

B. Black and Higgins 1958 [3]

These authors consider the geometry shown in Fig. l(a)

for the case of a single dielectric, and solve the problem by

exact conformal mapping, considering a ground plane of

finite width. Their work results into six equations with six

unknowns that must be solved in order to obtain the line

parameters. Their procedure is correct, but its application

is complicated even for the case of only one dielectric. We

will compare later on their finite ground plane, one dielec-

tric solutions, with our solution for an infinite ground

plane.

C. Wheeler 1964-65 [4], [5]

This author uses an approximate conformal transforma-

tion applied to the geometry of Fig. l(a). He determines

the approximate nature of the curve in the p plane that
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separates the two different dielectrics, and assumes rather

empirically that this curve is an ellipse. As we will show

later on, the exact curve between the dielectrics is indeed

similar to an ellipse in the sense that it intersects the metal

plate at UO+ iul, with an angle of 90°, and it intersects the

metal plate of O+ iUO with an angle of 0° (as can be

inferred from the conformal transfor.mation of the angles

in the z plane), but differs substantially from an ellipse in

the intermediate region in the p plane. This difference from

the ellipse causes substantial differences in the values of

calculated impedances, particularly for small d/h ratios

and for the case where the two dielectric constants differ

strongly. Using an ellipse as the curve between the dielec-

trics, Wheeler solved the electromagnetic problem and

calculated the capacitance of the mixed dielectric media.

D. Schneider 1969 [6], [7]

This author presents the exact conformal transformation

for the geometry considered in Fig. l(a) for the case of one

dielectric and when the ground plane is infinite in extent.

Schneider’s solution is given in terms of the logarithmic

derivative of Theta functions; this author did not attempt

to consider the case of two different dielectrics.

E. Poh et al. 1981 [8]

In this recent paper, the authors consider the solution for

the line capacitance and the characteristic impedance of a

microstripline by means of the spectral domain analysis

incorporating the edge effect singularity considering two

dielectrics and a ground plane of infinite width. We will

compare their results with ours later on in the paper,

We have indicated only those references that are of

particular interest for the case of two dielectrics. The

interested reader is referred to cumulative references for

complete bibliographical reviews [9].

II. SOLUTION FOR THE CASE OF ONE DIELECTRIC

(c, =62 = c)

Fig. 2 indicates the procedure required for transforma-

tion of the initial microstrip geometry in the z plane (Fig.

2(a)) into the real axis of the e plane (Fig. 2(b)) by means

of a Schwarz-Christoffel transformat ion of the polygon

ZIZ1 Z3ZdZ5Z6. The real axis of the e plane is then

transformed into the rectangular polygon PI Pz P~P1P~ in

the p plane (Fig. 2(d)) by means of an inverse Schwarz-

Christoffel transformation. The plane indicated in Fig. 2(c)
(plane w) is included for illustrative purposes since it arises

naturally in the evaluation of some of tlhe integrals.

Once the parameters of the p plane are determined ( UO

and UO), the capacitance of the microstrip for the simpler

one dielectric case can be calculated.

A. The Transformation z to e

By means of a standard Schwarz-Christoffel transforma-

tion, the z plane polygon indicated in Fig. 2(a) is trans-

formed into the real axis of the e plane by

J
~ (e-a’)de

Z= ZO+A
0 ~e(e–l)(e– b’)

(1)

Fig. 2
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where ZO, A, a’, and b’ are constants to be determined by

evaluating the correspondence of points in the z and e

planes. We introduce a new variable w (w 2 = e) so as to

obtain integrals directly expressible in the canonical forms

of elliptic integrals and elliptic functions [10], [11].

From the correspondence of points Zq = h and es =1, we

obtain

h/(–2A)= #a- b’)K(m)+@E(m) (2)

where

K(m) = the complete elliptic integral of the first kind

(3)

E(m) = the complete elliptic integral of the second kind

(4)

m = (l/b’), the modulus of the integrals. (5)

From the correspondence of points Zj = h and es = b’, we

obtain

h/(–2A) = ~(a’-b’)K(m)+@E(m)

– i@{ E’(m) –(a’/b’)K’(nl)) (6)

where

K’(m) =K(l–m) (7)

E’(m) =E(l- m). (8)

From the imaginary part of (6), we have

a’=b’(E’(m)/K’( m)). (9)

The correspondence of points z~ and ed implies

h+ Z(d/2) = a’

–2A
—K(m)+&{E(m)– K(m)}
m

‘i($fl@l/~l)-~’(m)}
–iW{E’(m)– ~(@l/al)} (lo)
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where

F( +1 /CKl ) = the incomplete elliptic integral of the

first kind (11)

E ( $1 /al ) = the incomplete elliptic integral of the

second kind (12)

(13)

al = Cos-’(VW. (14)

The imaginary part of (10) yields

d/2 a’
—{ F(O1/al)-Kf(m)}

+2 A=@

+~{b’E’(nz– a’K’(rn)}. (15)

Dividing (15) by (2), and rearranging terms, we obtain

d –a’F(@l/al) +b’E(@l/al)

%’ (a’- b’)K(m)+b’E(nz) “
(16)

If we substitute, in the equation above, the value of a’, as

given by (9), and if we use the definition of the Jacobi Z.

function

Zm(O1/al) =E($l/al)– E(@l)F($i/aI)/K( aI)

(17)

we can then rewrite (16) as follows:

~ = (2/n) K’(m) Zm(4q/al) = a function of m. (18)

Once m is known from the solution of (18), a’ can be

determined from (9). The constant A is found in terms of

m and b’ by substituting (9) in (2), and by using Legendre’s

[10] relation

A=–{hK’(m)}/{n@}. (19)

B. The Transformation p to e

Applying the normal Schwarz-Christoffel transformation

to the polygon P1P2 P3PQP~, defined in Fig. 2(d), in plane

p, we obtain the following transformation law from the p

to the e plane:

J
de

p=pO+B e (20)
0 /e(e–l)(e–b’) “

By establishing the relation between corresponding points

in planes e and p, and evaluating (20), we can determine

the values of the p plane parameters PO, U., U1, and U. as

follows :

po=o

uo/(+2B)=(l/@)K(m)

u. + iul
+2B =(1/@ {K(m) +iF(@,/a,)}

where

42= sin-l m
(xl = Cos-Ivm)

(21)

(22)

(23)

(24)

(25)

so that by separating real and imaginary parts

U1/(+2B) = (1/’@ )F(@2/a2).

335

we obtain

(26)

The equivalence of points p~ and es finally yields

2,40+ iuo
+2B = (1/@) {K(m) +iK’(m)} (27)

and again by separating real and imaginary parts, we

obtain

uo/(+2B) = (1/@)K(m) (28)

uo/(+2B) =(l/@)K(m). (29)

C. The Calculation of the Capacitance for the Single

Dielectric Case c1 = c~ G c

When the microstrip is immersed in a media with uni-

form permitivity c,’ the capacitance per unit length of line is

easily calculated in the geometry of the p plane. Because of

the nature of the solution of the Laplace equation, the

electrostatic potential in the region between the metal

plates of the p plane is identical to the solution for the

potential in an infinite parallel plate condenser. Thus, Cl

(the capacitance per unit length for the one dielectric case)

is simply given by

K’(m)
c1=2(uo/uo)=26—

K(m)
(30)

where m is determined from (18) as a function of the

parameter of the line in z space: (h /2d); the factor 2 takes

into account the fact that we considered half the line only.

In the case of a uniform dielectric, the wave propagation

mode is TEM, and we can easily determine the line imped-

ance. The velocity of propagation of the wave V is

(31)

where p is the permeability of the media, and LI is the

inductance per unit length of line. We determine the value

of LI from (31), and we substitute its value in the expres-

sion for the characteristic impedance of the line Z1
.

(32)

and finally, using (30), we obtain

zl=(fij(*). (33)

In Fig. 3, we show values of impedance calculated

according to our results when the line is in free space

(c= co and p = IJO) for different values of (d/h). Also

shown are results obtained by Assadurian and Rimai,

Black and Higgins, Wheeler, and Schneider. Table I shows

the comparison between numerical results. This compari-

son between the different results will be discussed later on

in the paper.
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Fig. 3, One dielectric (air) case: ZO versus (d/h) Continuous curve:

Our results: empty squares: Wheeler; dashed curve: Assadurian and
kmai; filled squares: Schneider; filled circles: Black and Hlz~ins (ratio
of top to bottom conductor widths = 4): empty circles: ‘Black’ and

Higgins (ratio of top to bottom conductors widths= 8)

TABLE I

I
20 (n] d/h dih

wheeler Schneider

210

150

126.958

100

88.132

56.338

50

30

20

0.14$, (+ 0.14) 0.145, [- 0.14]

0.666, (+ 0.03) 0.662, (- 0.16)

0.9927, ( 0.0)

1.605, (- 0.90) 1.613, (- 0.10]

4.840, [- 1.22) 4.786, (- 0.63)

‘3.519, (- 0.9o) 9.553, (- 0.56)

15.592, (- 0.20) 15.489, (- 0.86]

)
! II

wh WI
Black and Higgins Our Results

—

0.1458

0.6631

0.9927

1.6150

2.000, (- 1.961 2.040

4.000, (- 4.50) 4.189

4.9068

9.6062

15.623o

—

IV. SOLUTION FOR THE Two DIELECTRIC CASE

61 # 62

When the dielectric between the metal plates (see Fig.

l(a), z plane geometry) differs from the dielectric above the

top metal plate, the problem becomes quite complicated.

The waves no longer propagate in the simpler TEM modes:

the capacitance cannot be calculated simply, even in the p

plane geometry, unless the curve that separates the two

dielectrics is determined. We will follow other authors in

assuming quasi-TEM propagation. Thus, after determining

the combined z top transformation and the curve between

dielectrics, we will be able to calculate the capacitance and
the impedance of the line.

A. The z top Combined Transformation

Equations (1) and (20) that give the z to w and the p to e

transformations, respectively, when written in terms of the

variable w, are

/
(a’-w’)dwz=–’2~ ‘v (34)

O @ w’)(1- w’)

J
dwp=2B w

~ ~(b’-w’)(l-w’j

2B w

—.

+m0 IF=m%Wl

— . (35)

In view of the definition of the elliptic function sn [10] and

the nature of the integral in (35), we can write

w=sn(p) (36)

where p is a complex number closely related to p (as we

shall shortly see), and

where

0 = am P (the amplitude of p ) (38)

m = l/b’ (39)

so that by combining (35) and (36), we can determine the

relationship between p and p

p=p@/(2B). (40)

Furthermore, substitution of (36) into (34), use of (9) yields

Writing Legendre’s relation in a modified form yields

E’(m) E(m)
K?(m) ‘1– K(m) + 2K(m~K’(m) “ (42)

Recalling the form of the complex Jacobi Z. ( p/m) func-

tion

E(m)
Zn(P/m)=E(p/m)– —

K(m)p
(43)

and using the value of A given by (19), we can write from

(41) the combined transformation law from the z to the p

plane in two equivalent forms

(45)

As in the case of one dielectric, in the case of two

dielectrics the capacitance will depend on ratios of dis-

tances in the p plane. Thus, for our problem, B is arbitrary,

and we will select for simplicity 2 B = w, so that p = p.
Through the remainder of the paper we will use (44), with

p=p.

B. The Curve Between Dielectrics m the p Plane

Fig. 2 shows the nature of the p plane curve; it corre-

sponds to the line z = h + iy that separates the two dielec-

trics in the z plane (y is a real variable in the range

h < y < m). All points u and v on the curve must satisfy

(44)

h + iv = 2hK’(rn)

(
Zn[(u+iv)/ml+

n(u+ iv)

‘i7 }2K(m)K’(m) “

(46)

Separating the Jacobi Z. function into its real and imagin-
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ary parts yields

zn[(u+iu)/m]

= z,,(f.4/rn)

+ nzsn(u\m)cn (u/m) dn(u/nz)sn2(u/ml)

l–sn2(u/nzl) dn2(u/nt)

{
–i Zn(u/nzl)+

21qrn;k’(rn)

dn2(u/nz)cn(u/ml )sn(u/ml)dn(u/ml)—
l–sn2(u/ml)dn2( u/m) 1

(47)

where ml =1– m, and we have introduced the elliptic

functions sn, cn, and dn (see [10]). Substituting (47) into

(46), and the separate real and imaginary parts to yield

2hK’(m)
y=

{
– Zn(u/ml)

‘m

+ dn2(u/m)cn(u/ml) sn(u/ml)dn(u/ml)

l–sn2(u/rnl)dn2 (u/nz) 1
(48)

and

~= 2K’(m) (Zn(u/m)+
r 2K(m~K’(m)

+ msn(u/rn)cn(u/m) dn(u/m)sn2(u/ml)

l–sn2(u/ml) dn2(u/m) 1
(49)

Equation (49) gives the desired relationship u = U(u) that

defines the curve between the dielectrics. In order to see

this, let us solve for sn( u/ml)

sn(O/ml) = g(u/ml)

-( )

–1/2

msn(u/m)cn(u/m) dn(u/m)
— + dn2 ( u/m )

2K~m)-2K(m~;’(m)
–z,l(u\n’z)

(50)

where we have defined the function g( u/ml) for clarity.

From the definition of the inverse sn function we have

dw
sn-l(o/ml) = u =~g(u’~’)

o ((w’ -l)(m1w2 -1)

= f’(+3/fk) (51)

where

+~ = sin-l [g(u/ml)]. (52)

We can now resume the procedure which is followed in

our computer programs in the evaluation of the curve o(u).

1) Determine m as a function of ( d/h) by solving (18).

2) Select a value of u in the range between the plates

(O< U< K).

3) Calculate Z.(u/m), sn(u/m), and dn(u/m).

4) Calculate g(u/nzl) from (50).

5) Determine 03 according to (52).

6) Calculate the desired u as: u = F’(43 /ml).

Fig. 4.

v/k’ (m)

10

m= OOOOl

07 -

06 -

05 . 1 1 1 1
0 02 04 06 08 10

u/k(m)

Curve between dielectrics for two different m values. Continuous
lines: exact curves; dotted lrnes: quarter on an ellipse approximation.

Fig. 4 shows the curve between dielectrics in a normal-

ized diagram (u’ - u/K(m) and V’ - o/K’(m) for differ-

ent values of m. Also shown in Fig. 4 are two curves

corresponding to quarter of ellipses (for comparison with

Wheeler’s solutions).

C. The Calculation of the Capacitance for the Two
Dielectric Case

Once the curve between dielectrics is known, we proceed

to calculate the electrostatic potentials in the two dielectric

regions Vl( u’, u’) and V2( u’, u’). Both VI and V2 satisfy the

Laplace equation, subject to the following boundary condi-

tions:

VI(O,u’)= o (53)

V1(l, U’)=V2(1, U’)=1 (54)

VLV1(U’,O)=V’P’2(U’,1)=0 (55)

VI= V2

I

on the curve between (56)

61V ~vl = Cov ~v2 dielectrics. (57)

Equation (54) indicates the application of a normalized

external voltage, and (57) implies the continuity of the

normal component of the electric-field density at the inter-

face between dielectrics. v‘ indicates the normal compo-

nent of the gradient. Due to the nature of the curve

between dielectrics, we solve the problem numerically at

discrete voltage nodes, as those indicated schematically in

Fig. 5. The details of this calculation are discussed elsewhere

[12]. Once the voltages at all nodes in a column next to a

metal plate are known, the capacitance Cl for the two

dielectric system can be obtained. In the calculation, we

assumed medium 2 to be air (C2 = co).

Once C2 is determined, in view of (30), we can define

and calculate an effective relative dielectric permittivit y c~ff

C;ff = C2K(m)/[2coK’(m)]. (58)

Thus, for the two dielectric case, when the top one is air,

the characteristic line impedance 22 (assuming TEM prop-
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Fig. 5. The geometry of the two dielectrics capacitor, We indicate the

uosition of some of the discrete voltage nodes used in the numerical

~alculation. The continuous curve se~arates the dielectrics, and the

broken curve indicates its numericaf implementation. In our calculation
we used a matrix of 100X 100 nodes.

TABLE H

wheeler Poh et al 0., Results

d/h
2 (0) z (0) z(n) C:ff

0.10 156.900 [-0.02) 156,8150 [-0 07] 156.9334 2.7888

0.20 131.200 (-0 02] 131.07’30 (-0.11) 131.2270 2.8362

0 40 105.600 (+0.04) 105,4570 [-0.08) 105.5496 2.9o20

0.80 80,360 (+0.60] 80,2888 (+0.51) 79.8765 3.0065

1.00 72 470 (+0. 1’3) 72.4259 (+0.13) 72.3298 3 0553

1.25 64.780 (+0.13] 64.7711 (+0.11) 64,6965 3 1025

1.6666 55,280 (+1.071 55.3316 (+1.17) 54.6919 3,1189

2.50 43.030 (+0.02) 43.1640 [+0.33] 43,0226 3.2977

5 00 26.270 [-0.18] 26.4120 (+0.33) 26.3188 3.5200

10 00 15.050 [+0.12) 15.0800 [+0.32) 15.0315 3.7304

15 00 10 716 (+1.41) 10.5661 3.8370

TM,Odte[ectrics case: t ~ = Free space, e{= 4.2. Our results are compared

with those of Wheeler [5] and those of Poh er al. [8]. Numbers m

parentheses indicate percentage differences with our results.

TABLE III

dlh
Wheeler Poh et al our ,,s.1,,

z (r, z (,11 z(n) ,
‘eff

0 10 48.94 (-0 431 48 8455 (-0.6>) 49 1500 28 4321

0.20 40 80 ,-0 31, 40.70>5 (-0 ,5) 40 ‘32,3 29 ,575

0 40 32 70 (-0.11) 32.5941 (-0 431 32 7362 30 1687

0.80 24.14 (+0 76, 24.6381 (+0,35) 24 5523 31.8215

1 00 22.26 (+0 53) 22,1577 [+0.07) 22 1419 32.6081

1,25 19.84 (+0 55) 19 7478 (+0 08) 19,7317 33.3529

1 6666 16 85 (+1.62, 16.7860 (+1.23) 16 5818 34.5829

2.50 13. o3 [+0.74) 12 9930 (+0 46) 12,9340 36.4872

5.00 7.85 (+0 62) 7.8421 (+0 52) 7.8019 40 0576

0,00 4 44 (+0,76) 4 4260 (+0 44) 4.4065 43.4077

5 00 3.14 (+1 87) 3.0821 45 094?

Two dte/ectncs case: c~ = free space, c:= 51. Our results are compared
vwth those of Wheeler [51 and those of Poh er al. [81 Numbers m
parentheses indicate percentage differences with our resul&

agation) will be given (according to (33)) as

(59)

where ZO is the impedance of the line immersed in air

(cl = Cz= CO). Table II shows our impedance results for the

case where e;= 4.2, as well as results by Wheeler and Poh

et al. Table III shows similar results for the case C[ = 51.

V. DISCUSSION

Fig, 3 and Table I present the comparison of our results

with those of others for the case of one dielectric. It is

interesting to compare the finite ground-plane solution of

Black and Higgins, and the infinite ground-plane solution.

The points shown on Fig. 3, corresponding to Schneider’s

solution, were calculated using his approximate solution

(see [6, eqs. (16) and (17)). One entry in Table I corre-

sponds to the Schneider exact solution evaluated in terms

of theta functions, and it agrees exactly with our solution.

For the one dielectric case, any of the solutions presented

are accurate, with the exception of Assadurian and Rimai.

Of greater interest to us is the two dielectric solution. Our

results are summarized in Tables II and III. For the case of

c!= 4.2 and c~ = 51, and for the range of values (d/h)

presented, the maximum difference between our results

and those of Wheeler, and Poh et al., is of the order of 1 to

2 percent.
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Analysis of Wave Propagation in Anisotropic
Film Waveguides with Bent Optical Axes

MASAHIRO GESHIRO, MEMBER, IEEE, YASUO KAIHARA, AND SIbJNOSUKE SAWA, MEMBER, IEEE

Abstract —We present an analytical method for studying the wave

propagation in anisotropic planar opticaf wavegnides where the oblique
angle between the optical axis and the propagation axis changes arbitrarily

in the film surfacealong the propagation length. The analysisis basedon
the coupled-modetheory, where the coupling between a guided mode and

radiation modes is regarded to he of major importance. We apply a

hypothetical boundary method to quantize the continuum of radiation

modes, and replace the continuously changing oblique angle by a step

approxhnation. It k shownthat these approximations do not degrade the

computational accuracy. To exemptify the wave-propagation properties, we

deaf with a wavegnide consisting of LlNb03 and let the obfique angle

change linearly along the propagation length. It is found that the incident

guided TE mode leaks its power primarily in a very narrow region centered

on the criticaf obtiqne angle, and that TE radiation modes play an im-

portant role in the power conversion, even though they carry far less power

than the TM radiation modes.

I. INTRODUCTION

I T IS OF fundamental interest to know the guiding

properties of dielectric optical waveguides composed of

anisotropic, as well as isotropic, materials. Such knowledge

is needed for applications to guided-wave devices for opti-

Marmscnpt receivedJanuary 13, 1983; revisedOctober 19, 1983.
M. Geshiro and S. Sawa are with the Department of Electronics

Engineering, Faculty of Engineering, Ehime University, 3, Bunkyo,
Matsuyama, Ehime, 790 Japan.

Y. Kaihara is with Kakogawa Works, Kobe Steel, Ltd., Kanazawa,
Kakogawa, Hyogo, 675-01Japan.

cal integrated circuits. Usually, two different approaches

have been adopted in waveguide analysis. One approach is

based on the eigenvalue method in which modal solutions

of Maxwell’s equations are determined with the help of

boundary conditions provided that the waveguide is in-

finitely long and homogeneous along the propagation axis.

Most papers on wave propagation in anisotropic wave-

guides using this method have dealt with purely guided

modes [1]–[6]. Recently, interesting propagation character-

istics of hybrid leaky modes supported by planar aniso-

tropic waveguides or metal-diffused anisotropic wave-

guides have been analyzed where the optical axis of the

composing material makes an oblique angle with the prop-

agation axis in the film surface [7], [8].

The other approach is based on the coupled-mode theory

[9]. It is suitable for describing the wave propagation in

waveguides that are inhomogeneous along the propagation

axis and/or of finite length suitable for integrated optics

devices. Therefore, propagation properties obtained from it

may be useful from the device-planning viewpoint. In the

coupled-mode theory, ‘power leakage of a hybrid leaky

mode in an anisotropic waveguide is attributed to mode

conversion between a guided mode and radiation modes of

the orthogonal polarization [10]. The coupled-mode theory

is always applicable to the analysls of wave propagation in

anisotropic waveguides having any nondiagonal dielectric
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